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Abstract— Currently there is an active Post-Quantum 

Cryptography (PQC) solutions search, which attempts to 

find cryptographic protocols resistant to attacks by means 

of for instance Shor’s polynomial time algorithm for 

numerical field problems like integer factorization (IFP) 

or the discrete logarithm (DLP). The use of non-

commutative or non-associative structures are, among 

others, valid choices for these kinds of protocols. In our 

case, we focus on a permutation subgroup of high order 

and belonging to the symmetric group S381. Using 

adequate one-way functions (OWF), we derived a Diffie-

Hellman key exchange and an ElGamal ciphering 

procedure that only relies on combinatorial operations. 

Both OWF pose hard search problems which are assumed 

as not belonging to BQP time-complexity class. Obvious 

advantages of present protocols are their conceptual 

simplicity, fast throughput implementations, high 

cryptanalytic security and no need for arithmetic 

operations and therefore extended precision libraries. 

Such features make them suitable for low performance 

and low power consumption platforms like smart cards, 

USB-keys and cellphones. 
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I. INTRODUCTION 

Post-Quantum Cryptography (PQC) is a relatively new 

cryptologic trend [1, 2] that acquired a NIST status [3, 4] 

and which aims to be resistant to quantum computers 

attacks (like Shor algorithm [5]). Two main lines of 

research are non-commutative cryptography (NCC) [6, 7, 

8, 9, 10, 11, 12, 13] and non-associative cryptography 

(NAC) [13, 14, 15, 16, 17]. Belonging to the first 

category, this paper pursues the development of a fast and 

cryptanalytically secure solution using high order 

permutations [18, 19, 20, 21, 22, 23].   The protocol is 

extremely simple and could be directly adapted to any 

kind of asymmetric solutions like key exchange, key 

transport, generalized ElGamal ciphering and ZKP 

authentication [24, 25,26, 27, 28, 29, 30, 31, 32, 33]. The 

keystone here is to work with a high multiplicative order 

random permutation group <p>, belonging to the non-

commutative symmetric group S381 [18, 19, 20]. To 

achieve such performance, a carefully mix of randomness 

and structured symmetry was designed into the target 

permutation p.  

Security of an asymmetric cipher protocol always relies 

on a one-way function (OWF) [24]. For instance, using 

the decomposition problem (DP) or the double coset 

problem (DCP) [7], both assumed to belong to AWPP 

time-complexity (but out of BQP) [34] problems, which 

lead to an eventual brute-force attack, thus yielding high 

computational security. 

The cryptographic use of combinatorial structures like 

permutations is a long-known matter, either in linear way 

[20] or in two-dimensional combination like Row Latin 

Squares (RLS) [21, 22] or simply using quasigroups [23]. 

There are also patented protocols about [35]. 

Multidimensional tensor solutions are also conceivable, 

but their utility remains unclear. Other approaches into 

the same direction are the use of multiple orthogonal latin 

squares (MOLS) [36] and the use of non-group based 

latin squares [38]. More information about PQC, NCC 

and NAC could be found at published works and their 

own references. 

 

II. SOME STRUCTURAL DETAILS 

Permutations are simple combinatorial structures [20, 36]. 

A convenient way to map them as integers is the use of 

Lehmer’s factoradic representation [38, 39]. An optimal 

random permutation generation with an O(n) algorithm is 

described in [20] as Fisher-Yates-Durstenfeld Algorithm 

P.  

It is a known fact that the order of any permutation is the 

least common multiple of it independent cycle lengths 

[40]. So a simple way to construct a random high order 

group, is to embed any random permutation (say p) into 

prime length cycles using the increasing prime sequence 

[41] in random order. Summing those cycle lengths; one 

obtains the symmetric group orders into which the 

random permutation works as a generator of a cyclic 

subgroup, whose order is given by the respective 

primorial function [42]. A valid choice for the dimension 

of those lists that guarantee at same time high GDLP 

cryptographic security and does not deter computational 
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throughput, is the value 16.  Figure 1 displays the sixteen 

prime cycles, the defined S381 group and the resulting 

64-bits order of the cyclic subgroup <p>. At Fig. 1, the 

last value of the second and third lists are respectively the 

selected order of the symmetric group and the order of the 

cyclic subgroup generated by a random permutation 

whose cycle lengths are given by the first list. 

  

Fig.1: Parameter definitions 

 

III. DIFFIE-HELLMAN PROTOCOL 

Using above mentioned structures and operations, a 

generalized Diffie-Hellman key exchange is outlined at 

Fig. 2. 

 
Fig .2:  Generalized Diffie-Hellman key exchange 

The procedure is easy to follow with a numeric trial, as 

exposed separately in APPENDIX I, with same symbols 

as defined in Fig. 2. 

Using previous arguments and bearing in mind that 

neither polynomial time conventional DLP attack nor a 

quantum procedure against it is at hand; the 

computational security is assumed to be of 64-bits.  

The protocol works fast, using a non-optimized 

Mathematica interpreted code implementing a “square 

and multiply” routine and working on a ®Core i5 PC @ 

2.20GHz, the session mean time took 93,75 ms over a 

sample of 1000000 cycles. 

 

IV. ELGAMAL CIPHER 

Our version has his cryptographic security based on the 

double coset problem (DCP) or respectively, the 

decomposition problem (DP) as the one-way functions 

[7].  DCP or DP are supposedly hard challenges in group 

theory. As no quantum attack algorithm over symmetric 

groups is on sight and probably does not exist, these 

solutions do not belong to BQP complexity set. Of 

course, this statement should be proven; a challenge 

outside the purpose of present work.  

We present here both approaches. The general procedure 

is outlined at following figures. 

 
Fig.3:  Generalized ElGamal using DCP as OWF 

 

 
Fig.4:  Generalized ElGamal using DP as OWF 

 

Again, we proceed with a stepwise example. It is included 

at APPENDIX I using the DCP variation. All used 

symbols agreed with Fig. 3 definitions. 

 

V. CONCLUSIONS 

We developed a PQC solution using the symmetric group 

as the embedding structure. This approach fits into non-

commutative cryptography.  The random selection of high 

order elements is easy to obtain and lead naturally into 

big cyclic subgroups, where the DCP or the DP are hard 

to solve. Permutation group operations like integer 
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mapping, compositions (multiplications) and it powers, 

have easy solutions.  It relies only on simple 

combinatorial operations, no need of arithmetic or big-

number libraries.   This feature would enable its use in 

low computational resources environments like 

cellphones, smart cards, etc. 
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APPENDIX I: STEP BY STEP NUMERIC EXAMPLES OF THE GENERALIZED DIFFIE-HELLMAN KEY 

EXCHANGE AND GENERALIZED ELGAMAL CIPHER 

1. Generalized Diffie-Hellman Key Exchange 

 
Fig.1: Random permutation p, generator of the cyclic 

subgroup <p> belonging to S381. This public value could 

be concerted in advance or transferred to the second 

entity by the initiator. 

 

 
Fig.2: Embedded cycle lengths of p and cyclic subgroup 

<p> order, both public and fixed parameters. 

Once the generator is concerted, the protocol follows as 

usual with the selection of random secret exponents for 

each entity and subsequent exchange of public tokens.  

 

 
Fig.3: Alice and Bob randomly selected secret exponents 

{a.b} 

 
Fig. 4: Alice public token ta=pa. 
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Fig.5: Bob public token tb=pb 

 

Finally, both obtain a common session key because <p> 

has cyclic structure and powers commute. 

 

 
Fig.6: Alice key=(tb)a 

 

 
Fig.7: Bob key=(ta)b 

 

2. Generalized ElGamal Cipher 

Here we use the Fig 3. variation based on DCP. 

 
Fig.8: Public <p> generator. 
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Fig.9: Public auxiliar permutation 

 

 

 

 

 

 
Fig.10: Alice private values  
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Fig.11: Bob private values  

 
 

 
Fig.12: Public keys (Alice, Bob)  
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Fig.13: Alice session key and message  

 

 

 
Fig.14: ElGamal cipher pair (y1, y2) 
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Fig.15: Bob recovered message 
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